已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合。(1)求椭圆的方程 (2)过点的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标,若不存在,说明理由。
如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o. (Ⅰ)求证:平面ASD⊥平面ABCD; (Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值.
已知函数 (1)求的单调递增区间; (2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由. 下面的临界值表供参考: (参考公式:,其中)
(本小题满分13分)已知函数在处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围; (Ⅲ)证明:对任意的正整数,不等式都成立.
(本小题满分13分) 已知椭圆E中心在原点,一个焦点为,离心率 (Ⅰ)求椭圆E的方程; (Ⅱ)是长为的椭圆E动弦,为坐标原点,求面积的最大值与最小值