已知函数,.(1)求函数的单调增区间;(2)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.
已知集合
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为. (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
已知函数。 (Ⅰ)求的单调区间; (Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.
如图,已知四棱锥。 (1)若底面为菱形,,,求证:; (2) 若底面为平行四边形,为的中点,在上取点,过和点的平面与平面的交线为,求证:。
某幼儿园在“六·一儿童节”开展了一次亲子活动,此次活动由宝宝和父母之一(后面以家长代称)共同完成,幼儿园提供了两种游戏方案: 方案一 宝宝和家长同时各抛掷一枚质地均匀的正方体骰子(六个面的点数分别是1,2,3,4,5,6),宝宝所得点数记为,家长所得点数记为; 方案二宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间[1,6]的随机实数),宝宝的计算器产生的随机实数记为,家长的计算器产生的随机实数记为. (Ⅰ) 在方案一中,若,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概率; (Ⅱ)在方案二中,若,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读物的概率.