已知直线及圆.(1)求垂直于直线且与圆相切的直线的方程;(2)过直线上的动点作圆的一条切线,设切点为,求的最小值.
提高过江大桥的车辆通行能力可改善整个城市的交通状态。在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/小时)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数f(x)的定义域为,且满足f(2)=1,f(xy)=f(x)+f(y).(1)求f(1),f(4), f(8)的值;(2)证明:(3)函数f(x)当时都有.若成立,求的取值范围
已知为定义在 上的奇函数,当时,函数解析式为.(Ⅰ)求在上的解析式;(Ⅱ)求在上的最值
已知函数,,(1)判断函数的单调性,并证明;(2)求函数的最大值和最小值.
求半径为4,与圆x2+y2―4x―2y―4=0相切,且和直线y=0相切的圆的方程.