如图,在平面直角坐标系中,OA=OB=OC=8,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.(1)求点D的坐标;(2)过点C作CE⊥AD,交AB交于F,垂足为E.求证:OF=OG;(3)若点F的坐标为(,0),在第一象限内是否存在点P,使△CFP是以CF为腰长的等腰直角三角形?若存在,请求出点P坐标;若不存在,请说明理由.
分解因式:
解不等式组,并把解集表示在数轴上。
苏科版七年级(上册第119页)这样写道:棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形.底面是正三角形的直棱柱叫正三棱柱.现给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.
如图,平面直角坐标系中,抛物线与轴交于点A、B(点A在点B左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段AC交于点N,点P为线段AC上一个动点(与A、C不重合) .(1)求点A、B的坐标;(2)在抛物线的对称轴上找一点D,使|DC-DA|的值最大,求点D的坐标;(3)过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点的坐标.
如图,在直角坐标系中,半径为1的⊙圆心与原点重合,直线分别交轴、轴于点、点,若点的坐标为且.⑴若点是⊙上的动点,求到直线的最小距离,并求此时点的坐标;⑵若点从原点出发,以1个单位/秒的速度沿着线路运动,回到点停止运动,⊙随着点的运动而移动.①求⊙在整个运动过程中所扫过的面积;②在⊙整个运动过程中,⊙与的三边相切有 种不同的情况,分别写出不同情况下,运动时间的取值 .