如图1,已知锐角△ABC中,CD.BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)连接DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(2)求证:MN⊥DE;(3)若将锐角△ABC变为钝角△ABC,如图2,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,请说明理由.
(1) 解方程:-=1;(2) 解不等式组:
计算:(1) (2)1-÷
已知抛物线经过点A(3,2),B(0,1)和点C.(1)求抛物线的解析式;(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若,求点F的坐标;(3)在(2)的条件下,在y轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.
如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2,求的值.图1 图2
如图,已知双曲线经过点M,它关于y轴对称的双曲线为.(1)求双曲线与的解析式;(2)若平行于轴的直线交双曲线于点A,交双曲线于点B,在轴上存在点P,使以点A,B,O,P为顶点的四边形是菱形,求点P的坐标.