已知函数().(1)判断的奇偶性;(2)当时,求证:函数在区间上是单调递减函数,在区间上是单调递增函数;(3)若正实数满足,,求的最小值.
设:实数满足 ,其中,:实数满足.(1)当,且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
已知定点,曲线C是使为定值的点的轨迹,曲线过点.(1)求曲线的方程;(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;(3)设点是曲线上除长轴端点外的任一点,连接、,设的角平分线交曲线的长轴于点,求的取值范围.
已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面; (2)求平面与平面的所成角的正切值.
已知是等比数列的前项和,、、成等差数列,且.(1)求数列的通项公式;(2)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.
已知,设:函数在上单调递减;:函数在上为增函数.(1)若为真,为假,求实数的取值范围;(2)若“且”为假,“或”为真,求实数的取值范围.