如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10,两栏之间的中缝空白的宽度为5,设广告牌的高为,宽为(Ⅰ)试用表示;(Ⅱ)用表示广告牌的面积;(Ⅲ)广告牌的高取多少时,可使广告牌的面积最小?
(本小题满分10分)选修4-1:几何证明选讲 如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数 (Ⅰ)若函数在上位增函数,求的取值范围. (Ⅱ) 求在区间上的最小值; (Ⅲ) 若在区间上恰有两个零点,求的取值范围.
已知椭圆:的离心率为,右顶点是抛物线的焦点.直线:与椭圆相交于,两点. (Ⅰ)求椭圆的方程; (Ⅱ)如果,点关于直线的对称点在轴上,求的值.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE = EC (1)求证:平面 (2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是,假设每一次考试是否合格互不影响. ①求某个学生不被淘汰的概率. ②求6名学生至多有两名被淘汰的概率 ③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量的分布列和数学期望.