已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为.(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程.[
(本小题满分12分)如图8—3,已知ΔOFQ的面积为S,且.(1)若,求向量与的夹角θ的取值范围;(2)设,,若以O为中心,F为焦点的椭圆经过点Q,当取得最小值时,求此椭圆方程.
(本小题满分12分)从集合的所有非空子集中,等可能地取出一个.(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为,求的分布列和数学期望E.
(本小题满分12分)数列中,,且点在直线上.(Ⅰ)设,求证:是等比数列;(Ⅱ)设,求的前项和.
(本题满分12分)已知函数.(1)求在上的最大值;(2)若对任意的实数,不等式恒成立,求实数的取值范围;(3)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
(本题满分12分)已知点都在直线上,为直线与轴的交点,数列成等差数列,公差为1.()(1)求数列,的通项公式;(2)求证: …… + (2,)