设O为坐标原点,点P的坐标(x-2,x-y).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为. (1)求的分布列; (2)求1件产品的平均利润(即的数学期望); (3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?
学校为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响. (Ⅰ)求移栽的4株大树中恰有3株成活的概率; (Ⅱ)设移栽的4株大树中成活的株数为,求分布列与期望.
已知的展开式中的二项式系数之和为256. (Ⅰ)证明展开式中没有常数项; (Ⅱ)求展开式中所有有理项.
某校从6名教师中,选派4名同时到3个边远地区支教,每个地区至少选派1名. (Ⅰ) 共有多少种不同的选派方法? (Ⅱ) 若6名教师中的甲,乙二位教师不能同时支教,共有多少种不同的选派方法?
设首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30. (1) 求a1及d; (2) 若数列{bn}满足an=(n∈N*),求数列{bn}的通项公式.