已知椭圆的焦点坐标是,,过点垂直于长轴的直线交椭圆与两点, 且. (1)求椭圆的方程.(2)过的直线与椭圆交于不同的两点, 则的内切圆面积是否存在最大值?若存在, 则求出这个最大值及此时的直线方程; 若不存在,请说明理由.
我国是水资源匮乏的国家为鼓励节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为吨,应交水费为。 (1)求、、的值; (2)试求出函数的解析式。
已知是二次函数,且 (1)求的解析式; (2)求函数的单调递减区间及值域。
已知, (1)证明: (2)计算的值
已知集合 (1)求;(2)求;(3)若,求a的取值范围。
已知点,圆,过点的动直线与圆交于两点,线段的中点为,O为坐标原点. (1)求的轨迹方程; (2)当时,求的方程及的面积.