设椭圆:,, 分别是椭圆的左右焦点,过椭圆右焦点的直线与椭圆交于,两点. (1)是否存在直线,使得 ,若存在,求出直线的方程;若不存在,说明理由; (2)若是椭圆经过原点的弦,且,求证:为定值.
已知的三个内角所对的边分别为,是锐角,且. (Ⅰ)求的度数; (Ⅱ)若,的面积为,求的值.
.(本小题满分14分) 已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中. (Ⅰ)求的值; (Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式; (Ⅲ)记(Ⅱ)中数列的前项之和为,求证:.
(本小题满分14分) 设椭圆的左右焦点分别为、,是椭圆上的一点,,坐标原点到直线的距离为. (1)求椭圆的方程; (2)设是椭圆上的一点,过点的直线交轴于点,交轴于点,若,求直线的斜率.
(本小题满分14分) 设,函数 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若函数在上是单调减函数,求实数的取值范围.
(本小题满分14分) 如图,四棱锥的底面为菱形,平面,,、分别为、的中点。 (I)求证:平面;(Ⅱ)求三棱锥的体积; (Ⅲ)求平面与平面所成的锐二面角大小的余弦值。