在平面直角坐标系中,已知曲线(θ为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)试写出曲线的极坐标方程与曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.
若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点、组成一个正三角形,焦点到椭圆上的点的最短距离为.(1)求椭圆的方程;(2)过点作直线与椭圆交于、两点,线段的中点为,求直线的斜率的取值范围.
已知直线与双曲线交于两点,(1)若以线段为直径的圆过坐标原点,求实数的值。(2)是否存在这样的实数,使两点关于直线对称?说明理由.
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.(1)求椭圆的方程;(2)求直线的方程.
设直线与抛物线交于两点.(1)求线段的长;(2)若抛物线的焦点为,求的值.
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果“”为假,且“”为真,求实数的取值范围。