定义域为的函数满足:对任意的有,且当时,有,.(1)证明:在R上恒成立;(2)证明:在上是减函数;(3)若时,不等式恒成立,求实数的取值范围.
如图,四棱锥中,底面为菱形,⊥平面, 交于点是线段中点,为线段中点.(1)求证://平面;(2)求证:⊥.
(本小题满分14分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间(天)的函数,且销售量近似满足(件),价格近似满足(元).(1)试写出该种商品的日销售额与时间()的函数关系表达式;(2)求该种商品的日销售额的最大值与最小值
已知向量,其中.(1)若,求函数的最小值及相应x的值;(2)若与的夹角为,且,求的值.
(本小题满分10分)已知函数.(1)求函数的定义域并判断函数的奇偶性;(2)设,若记,求函数的最大值的表达式.
已知圆.(1)此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于、两点,且 (为坐标原点),求的值;(3)在(2)的条件下,求以为直径的圆的方程.