(本小题满分14分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间(天)的函数,且销售量近似满足(件),价格近似满足(元).(1)试写出该种商品的日销售额与时间()的函数关系表达式;(2)求该种商品的日销售额的最大值与最小值
已知.经计算得,,,,,通过观察,我们可以得到一个一般性的结论. (1)试写出这个一般性的结论;(2)请用数学归纳法证明这个一般性的结论;(3)对任一给定的正整数,试问是否存在正整数,使得?若存在,请给出符合条件的正整数的一个值;若不存在,请说明理由.
阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+② 得------③令 有代入③得 .(1) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(2)若的三个内角满足,直接利用阅读材料及(1)中的结论试判断的形状.
从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(Ⅰ)男、女同学各2名;(Ⅱ)男、女同学分别至少有1名;(Ⅲ)在(Ⅱ)的前提下,男同学甲与女同学乙不能同时选出.
已知复数在复平面内所对应的点为.(1)若复数为纯虚数,求实数的值;(2)若点在第二象限,求实数的取值范围;(3)求的最小值及此时实数的值.
设命题:曲线上任一点处的切线的倾斜角都是锐角;命题:直线与曲线有两个不同的公共点;若命题和命题中有且只有一个是真命题,求实数的取值范围.