以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位已知直线 的参数方程为 (t为参数,),曲线C的极坐标方程为(Ⅰ)求曲线C的直角坐标方程。(Ⅱ)设直线 与曲线C相交于A,B两点,当变化时,求 的最小值
已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.(1)以直线AB的倾斜角为参数,求曲线C的参数方程;(2)求点P到点距离的最大值.
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:(1);(2)EF//CB.
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
已知函数,. (1)当时,求的最小值; (2)若,求a的取值范围.