在网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB′C′;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A″B″C″,并写出A″、B″、C″三点的坐标.
透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同. (1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少? (2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.
如图,在直角坐标系中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点。 (1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标。
为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行社收费标准如下: 春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?
解方程(每题4分,共8分) (1) (2)
如图,在中,,,.点、都是斜边上的动点,点从向运动(不与点重合),点从向运动,.点、分别是点、以、为对称中心的对称点,于,交于点.当点到达顶点时,、同时停止运动.设的长为,的面积为. (1)求证:∽; (2)求关于的函数解析式; (3)当为何值时,为等腰三角形?