如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π)
(满分8分)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题: (1)这三个图案都具有以下共同特征:都是______对称图形,都不是____对称图形. (2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.
(满分6分)解关于的方程:
探究问题: ⑴方法感悟: 如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF. 感悟解题方法,并完成下列填空: 将△ADE绕点A顺时针旋转90°得到△ABG,此时AB 与AD重合,由旋转可得: AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°, 因此,点G,B,F在同一条直线上. ∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE,AF=AF ∴△GAF≌_______. ∴_________=EF,故DE+BF=EF. ⑵方法迁移: 如图②,将 沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF= ∠DAB.试猜想DE,BF,EF之间有何数量 关系,并证明你的猜想. ⑶问题拓展: 如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足 ,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
如图,已知二次函数 的图象经过 A( , ),B(0,7)两点. ⑴ 求该抛物线的解析式及对称轴; ⑵ 当 为何值时, ? ⑶ 在 轴上方作平行于 轴的直线 ,与抛物线交于C,D两点(点C在对称轴的左侧), 过点C,D作 轴的垂线,垂足分别为F,E.当矩形CDEF为 正方形时,求C点的坐标.
如图,AB是半圆O的直径,点C是⊙O上一点 (不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上 取一点E,连接EB,使∠OEB=∠ABC. ⑴ 求证:BE是⊙O的切线; ⑵ 若OA=10,BC=16,求BE的长.