在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,李晓同学从布袋里随机取出一个小球,记下数字为x,张丹同学在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=﹣x+6图象上的概率.
如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)
(1)频数、频率分布表中a= ,b= . (2)补全频数分布直方图. (3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少? (4)从该图中你还能获得哪些数学信息?(填写一条即可)
如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)
先化简代数式,再从0,1,2三个数中选择适当的数作为a的值代入求值.
在平面直角坐标系中, 抛物线+与直线交于A, B两点,点A在点B的左侧. (1)如图1,当时,直接写出A,B两点的坐标; (2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标; (3)如图2,抛物线+ 与轴交于C,D两点(点C在点D的左侧).在直线上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时的值;若不存在,请说明理由. 图1图2
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC. (1) 试判断BE与FH的数量关系,并说明理由; (2) 求证:∠ACF=90°; (3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长. 图1图2