一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:(1)取出的1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率.
如图,四边形ABCD是的内接四边形,延长BC,AD交于点E,且CE=AB=AC,连接BD,交AC于点F.(I)证明:BD平分;(II)若AD=6,BD=8,求DF的长.
已知函数,其中常数a>0.(I )当a>2时,求函数f(x)的单调递增区间;(II)当a=4时,给出两类直线:与,其中m,n为常数.判断这两类直线中是否存在的切线?若存在,求出相应的m或n的值;若不存在,说明理由;(III)设定义在D上的函数在点处的切线方程为,当时,若在D内恒成立,则称P为函数的“类对称点”.当a=4时,试问是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.
已知椭圆:与X轴、y轴的正半轴分别交于A,B两点,原点O到直线AB的距离为,该椭圆的离心率为(I)求椭圆的方程;(II)是否存在过点的直线I与椭圆交于M,N两个不同的点,且对l外任意一点Q,有成立?若存在,求出l的方程;若不存在,说明理由.
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字.(I)求取出的3张卡片上的数字互不相同的概率;(II)求随机变量x的分布列及数学期望;(III)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,,(I )在直线BC上是否存在一点P,使得DP//平面EAB?请证明你的结论;(II)求平面EBD与平面ABC所成的锐二面角的余弦值.