已知椭圆:与X轴、y轴的正半轴分别交于A,B两点,原点O到直线AB的距离为,该椭圆的离心率为(I)求椭圆的方程;(II)是否存在过点的直线I与椭圆交于M,N两个不同的点,且对l外任意一点Q,有成立?若存在,求出l的方程;若不存在,说明理由.
(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为(是已知正实数),求与之间的最短距离.
(本小题满分14分)甲、乙两间商店购进同一种商品的价格均为每件30元,销售价均为每件50元.根据前5年的有关资料统计,甲商店这种商品的年需求量服从以下分布:
乙商店这种商品的年需求量服从二项分布. 若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理;乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推.今年甲、乙两间商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?
(本小题满分14分)如图某一几何体的展开图,其中是边长为6的正方形,,,,点、、、及、、、共线.(Ⅰ)沿图中虚线将它们折叠起来,使、、、四点重合为点,请画出其直观图; (Ⅱ)求二面角的大小;(Ⅲ)试问需要几个这样的几何体才能拼成一个棱长为6的正方体?
(本小题满分12分)已知函数,. (Ⅰ)当时,求函数的单调区间;(Ⅱ)设函数在区间内是减函数,求的取值范围.
(本小题满分12分)在中,,,. (Ⅰ)求的值;(Ⅱ)求的值.