(本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=,M为AB的中点.(1)证明:AC⊥SB;(2)求点B到平面SCM的距离。
已知函数f (x)=lnx,g(x)=ex.(I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
最近,某人准备将手中的10万块钱投资理财,现有二种方案:第一种方案:将10万块钱全部用来买股票,据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为.第二种方案:将10万块钱全部用来买基金,据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为.针对以上两种投资方案,请你为选择一种合理的理财方法,并说明理由.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望;(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
附:下面的临界值表供参考:(参考公式:,其中)
已知函数(Ⅰ)若曲线在点处的切线的倾斜角为,求实数的值;(Ⅱ)若函数在区间上单调递增,求实数实数的范围.