已知函数,其中常数a>0.(I )当a>2时,求函数f(x)的单调递增区间;(II)当a=4时,给出两类直线:与,其中m,n为常数.判断这两类直线中是否存在的切线?若存在,求出相应的m或n的值;若不存在,说明理由;(III)设定义在D上的函数在点处的切线方程为,当时,若在D内恒成立,则称P为函数的“类对称点”.当a=4时,试问是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.
((本小题满分12分)设函数.(Ⅰ)当时,过原点的直线与函数的图象相切于点P,求点P的坐标;(Ⅱ)当时,求函数的单调区间;(Ⅲ)当时,设函数,若对于],[0,1]使≥成立,求实数b的取值范围.(是自然对数的底,)
(.(本小题满分12分)如图,焦距为2的椭圆E的两个顶点分别为和,且与共线.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.
((本小题满分12分)数列各项均为正数,其前项和为,且满足.(Ⅰ)求证数列为等差数列,并求数列的通项公式;(Ⅱ)设, 求数列的前n项和,并求使 对所有的都成立的最大正整数m的值.
((本小题满分12分)如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点.(Ⅰ)求证:平面AEC;(Ⅱ)求二面角的余弦值.
(本小题满分12分)在某海岸A处,发现北偏东方向,距离A处n mile的B处有一艘走私船在A处北偏西的方向,距离A处n mile的C处的缉私船奉命以n mile/h的速度追截走私船. 此时,走私船正以5 n mile/h的速度从B处按照北偏东方向逃窜,问缉私船至少经过多长时间可以追上走私船,并指出缉私船航行方向.