设函数fn(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:fn(x)在区间内存在唯一零点;(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设xn是fn(x)在内的零点,判断数列x2,x3,…,xn,…的增减性.
设函数f(x)=x3-ax2+3x+5(a>0). (1)已知f(x)在R上是单调函数,求a的取值范围; (2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.
(本题满分14分) 已知函数 的图象上。 (1)求数列的通项公式; (2)令求数列 (3)令证明:。
(本题满分14分) 已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交 椭圆于,两点: (Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
(本题满分14分) 已知是等差数列,其中. (1)求通项公式; (2)数列从哪一项开始小于0; (3)求值.
(本题满分14分) 已知△的内角所对的边分别为且. (1) 若, 求的值; (2) 若△的面积求的值.