已知函数,且.(1)求的值;(2)判断函数的奇偶性;(3)判断在上的单调性并加以证明.
已知数列中,是它的前项和,并且,. (Ⅰ)设,求证是等比数列(Ⅱ)设,求证是等差数列; (Ⅲ)求数列的通项公式.
已知函数在处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
等差数列的各项均为正数,,前项和为,为等比数列, ,且. (Ⅰ)求与; (Ⅱ)求数列的前项和。
( 12分)在中,角所对的边分别为,满足,且的面积为.⑴求的值;⑵若,求的值.
已知向量(I)若求(II)求的最大值。