已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过两点.(Ⅰ)求椭圆的方程;(Ⅱ)若平行于的直线交椭圆于两个不同点,直线与的斜率分别为,试问:是否为定值?若是,求出此定值;若不是,说明理由.
解关于x的不等式≤(其中a>0且a≠1).
已知定义域为R的函数f(x)=是奇函数. (1)求a,b的值; (2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-. (1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数; (3)求f(x)在[-3,6]上的最大值与最小值
一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元, (1)y(万元)与x(件)的函数关系式为? (2)该工厂的年产量为多少件时,所得年利润最大,并求出最大值.(年利润=年销售总收入-年总投资)
已知函数 (1)如果求a的值 (2)问a为何值时,函数的最小值为-4