已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过两点.(Ⅰ)求椭圆的方程;(Ⅱ)若平行于的直线交椭圆于两个不同点,直线与的斜率分别为,试问:是否为定值?若是,求出此定值;若不是,说明理由.
(本小题满分16分)已知数列满足:,,,记数列,().(1)证明数列是等比数列;(2)求数列的通项公式;(3)是否存在数列的不同项()使之成为等差数列?若存在请求出这样的不同项();若不存在,请说明理由.
(本小题满分15分)如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为,的周长为.(1)求椭圆的方程;(2)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
(本小题满分15分)某企业有两个生产车间分别在A,B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A,B,C中任意两点间的距离均有1 km,设∠BDC=,所有员工从车间到食堂步行的总路程为S.(1)写出S关于的函数表达式,并指出的取值范围;(2)问食堂D建在距离A多远时,可使总路程S最少?
(本小题满分14分)如图,四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.(1)求证:BG面PAD;(2)E是BC的中点,在PC上求一点F,使得PG面DEF.
(本小题满分14分) 设已知,,其中. (1)若,且,求的值; (2)若,求的值.