已知过原点的动直线与圆相交于不同的两点,.(Ⅰ)求线段的中点的轨迹的方程;(Ⅱ)是否存在实数,使得直线与曲线只有一个交点:若存在,求出的取值范围;若不存在,说明理由.
(本小题满分10分)选修4—1:几何证明选讲如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和.(1)求证 (2)求的值.
(本小题满分12分)已知函数 (1)当时,求的单调递减区间;(2)若当时,恒成立,求的取值范围;(3)求证:
已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且,点在该椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切圆的方程.
己知斜三棱柱的底面是边长为的正三角形,侧面为菱形,,平面平面,是的中点.(1)求证:;(2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(1)求的值;(2)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.