(1)7人站成一排,要求较高的3个学生站在一起;(2)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减。(3)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮。
(本小题满分12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,. (Ⅰ)求数列与的通项公式; (Ⅱ)求数列的前项和.
(本小题满分12分)如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.若P为AC上的点,且满足. (Ⅰ)求证: (Ⅱ)求三棱锥的体积;
(本小题满分12分)已知向量m=(sinωx,cosωx),n=(cosωx,-cosωx),若函数f(x)=m·n的图象关于直线对称,其中ω取所有可能值中的最小正数值. (Ⅰ)求的周期和单调递增区间; (Ⅱ)△ABC中,如果f()=,b=4,且asinA-bsinB=sinC(c-b),求△ABC的面积.
(本小题满分12分)一次数学测验,某班50名同学的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组,……,第五组.按上述分组方法得到的频率分布直方图如图所示. (Ⅰ)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数; (Ⅱ)若从第一、五组中随机取出两个同学的成绩,求这两个成绩差的绝对值大于30分的概率.
(本小题满分14分)设函数f(x)=ln x+在(e,+∞)内有极值. (Ⅰ)求实数a的取值范围; (Ⅱ)若存在x0>1使得k>f(x0)+成立,求整数k的最小值; (Ⅲ)若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-(注:e是自然对数的底数).