已知函数的图象在轴上的截距为1,它在轴右侧的第一个最大值点和最小值点分别为和. (1)试求的解析式;(2)将图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数的图象.求出函数的解析式。
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)若存在,使不等式成立,求实数m的取值范围.
已知数列满足+=4n-3(n∈). (1)若数列是等差数列,求的值; (2)当=2时,求数列的前n项和; (3)若对任意n∈,都有≥5成立,求的取值范围.
已知函数=+,a≠0且a≠1. (1)试就实数a的不同取值,写出该函数的单调增区间; (2)已知当x>0时,函数在(0,)上单调递减,在(,上单调递增,求a的值并写出函数的解析式; (3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.
已知F是椭圆:=1的右焦点,点P是椭圆上的动点,点Q是圆:+=上的动点.(1)试判断以PF为直径的圆与圆的位置关系; (2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.