(本题满分12分) 已知平面区域恰好被面积最小的圆C:及其内部覆盖.(1)求圆C的方程;(2)斜率为1的直线与圆C交于不同两点A、B,且,求直线的方程.
已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
已知函数的图象过原点,且在、处取得极值.(Ⅰ)求函数的单调区间及极值;(Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
(本小题满分12分)已知抛物线的准线方程,与直线在第一象限相交于点,过作的切线,过作的垂线交x轴正半轴于点,过作的平行线交抛物线于第一象限内的点,过作抛物线的切线,过作的垂线交x轴正半轴于点,…,依此类推,在x轴上形成一点列,,,…,,设点的坐标为(Ⅰ)试探求关于的递推关系式;(Ⅱ)求证:;(Ⅲ)求证:.
(本小题满分12分)设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(Ⅰ)求圆心的轨迹E的方程; (Ⅱ)过点(0,1),作轨迹的两条互相垂直的弦,,设、 的中点分别为,,试判断直线是否过定点?并说明理由.
(本小题满分12分)某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为元(其中为常数,且),设该工厂每件玩具的出厂价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.(Ⅰ)求该工厂的日利润(元)与每件玩具的出厂价元的函数关系式;(Ⅱ)当每件玩具的日售价为多少元时,该工厂的利润最大,并求的最大值.