(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.
已知数列{an}、{bn}满足:a1=2,b1=1, 且(n≥2). (1)令cn=an+bn,求数列{cn}的通项公式; (2)求数列{an}的通项公式及前n项和公式Sn.
假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底, (1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47, 1.086≈1.59)
已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an) (n∈N*)是首项为4,公差为2的等差数列. (1)设a为常数,求证:{an}成等比数列; (2)若bn=anf(an),{bn}的前n项和是Sn,当a=时,求Sn.
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*). (1)求数列{an}的通项an; (2)求数列{nan}的前n项和Tn.
设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (1)求数列{an}和{bn}的通项公式; (2)设cn=,求数列{cn}的前n项和Tn.