某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示:(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
在正项等比数列中,公比,且和的等比中项是.(1)求数列的通项公式;(2)若,判断数列的前项和是否存在最大值,若存在,求出使最大时的值;若不存在,请说明理由.
如图,在三棱锥中,和都是以为斜边的等腰直角三角形,分别是的中点.(1)证明:平面//平面;(2)证明:;(3)若,求三棱锥的体积.
汽车是碳排放量比较大的行业之一,某地规定,从2014年开始,将对二氧化碳排放量超过的轻型汽车进行惩罚性征税。检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?(2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.
已知函数. 的部分图象如图所示,其中点是图象的一个最高点.(1)求函数的解析式;(2)已知且,求.
已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)设,证明:.