某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示:(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
已知函数为奇函数. (Ⅰ)若,求函数的解析式; (Ⅱ)当时,不等式在上恒成立,求实数的最小值; (Ⅲ)当时,求证:函数在上至多一个零点.
【原创】六个人站成一排,求在下列条件下的不同排法种数: (1)甲必须在排头; (2)甲、乙相邻; (3)甲不在排头,并且乙不在排尾; (4)其中甲、乙两人自左向右从高到矮排列且互不相邻.
函数. (1)函数在点处的切线与直线垂直,求a的值; (2)讨论函数的单调性; (3)不等式在区间上恒成立,求实数a的取值范围.
对于任意正整数n,猜想2n﹣1与(n+1)2的大小关系,并给出证明.
设数列的前项和为,且. (1)求数列的通项公式; (2)若数列满足,求数列的通项公式.