已知:如图,,点是的中点,, 、分别交于点、.(1)图中有几组全等三角形,请把它们直接表示出来;(2)求证:.
如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称
如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式;(2)试探究的外接圆的圆心位置,并求出圆心坐标;(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.
现有一副直角三角板,已知含45°角的直角三角板的斜边恰与含30°角的直角三角板的较长直角边完全重合(如图①).即△C´DA´的顶点A´、C´分别与△BAC的顶点A、C重合.现在让△C´DA´固定不动,将△BAC通过变换使斜边BC经过△C´DA´的直角顶点D. (1)如图②,将△BAC绕点C按顺时针方向旋转角度α(0°<α<180°),使BC边经过点D,则α= ° (2)如图③,将△BAC绕点A按逆时针方向旋转,使BC边经过点D.试说明:BC∥A´C´. (3)如图④,若将△BAC沿射线A´C´方向平移m个单位长度,使BC边经过点D,已知AB=,求m的值.
已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相交于点F.求证:(1)DE为⊙O的切线.(2)AB•DF=AC•BF.
甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?