如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点.(1)求长;(2)当⊥时,求证:.
(本小题满分14分)在平面直角坐标系中,的两个顶点的坐标分别是,点是的重心,轴上一点满足,且. (1)求的顶点的轨迹的方程; (2)不过点的直线与轨迹交于不同的两点.若以为直径的圆过点时,试判断直线是否过定点?若过,请求出定点坐标,不过,说明理由.
(本小题满分13分)已知函数. (1)当时,求曲线在处的切线方程; (2)设函数,求函数的单调区间; (3)若,在上存在一点,使得成立,求的取值范围.
(本小题满分12分)如图所示,已知在四棱锥中, ∥,,, 且 (1)求证:平面; (2)试在线段上找一点,使∥平面, 并说明理由; (3)若点是由(2)中确定的,且,求四面体的体积.
(本小题满分12分)已知数列是等比数列,首项,公比,其前项和为,且,,成等差数列. (1)求数列的通项公式; (2)若数列满足,为数列的前项和,若恒成立,求的最大值.
(本小题满分12分)某厂家生产甲、乙、丙三种样式的杯子,每种杯子均有和两种型号,某月的产量(单位:个)如下表所示:
按样式用分层抽样的方法在这个月生产的杯子中随机的抽取个,其中有乙样式的杯子个. (1)求的值; (2)用分层抽样的方法在甲样式的杯子中抽取一个容量为的样本,从这个样本中任取个杯子,求至少有个的杯子的概率.