甲、乙两地相距千米,汽车从甲地匀速行驶到乙地,速度不得超过千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米/时)的函数,指出定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?全程运输成本最小是多少?
等比数列的各项均为正数,且 (1)求数列的通项公式. (2)设 求数列的前项和
在ABC中,内角A,B,C的对边分别为a,b,c. 已知. (1)求的值; (2)若cosB=,b=2,的面积S。
(本小题满分14分) 指出函数在上的单调性,并证明之.
(本小题满分12分) 已知f(x)是R上的偶函数,且在(0,+ )上单调递增,并且f (x)<0对一切成立,试判断在(-,0)上的单调性,并证明你的结论
(本小题满分12分) 如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x,求此框架围成的面积y与x的函数式y=f (x),并写出它的定义域