如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=,求⊙O的半径.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定;顾客在本商场同一日内,每消费200元就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应金额的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到()元购物券,至多可以得到()元购物券 (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率
如图为7×7的正方形网格, (1)作出等腰直角三角形ABC关于直线MN成轴对称变换的像⊿A1BC1(A对应A1,C对应C1); (2)作出⊿A1BC1绕点B逆时针旋转90o得到的像⊿A2BC2(A1对应A2, C1对应C2); (3)填空:⊿A2BC2可以看作将⊿ABC经过连续两次平移得到,则这两次平移具体的操作方法是 ____________________________(需指明每次平移的方向和距离).
解方程:
解方程组:
因式分解: