某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为多少?(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
用任意2个全等的三角形能拼成平行四边形吗?自己画两个全等的三角形试一试,把你拼的图形画出来,说明理由.
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.
已知:用2辆型车和1辆型车装满货物一次可运货10吨;用1辆型车和2辆型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆型车和1辆型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若型车每辆需租金100元/次,型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.