已知向量且A、B、C分别为△ABC的三边a、b、c所对的角.(1)求角C的大小;(2)若成等差数列,且,求c边的长.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
在公比为的等比数列中,与的等差中项是.(Ⅰ)求的值;(Ⅱ)若函数,,的一部分图像如图所示,,为图像上的两点,设,其中与坐标原点重合,,求的值.
设数列 是集合中的数从小到大排列而成,即a1=3,a2=5,a3=6,a4=9,a5=10,…。现将各数按照上小下大、左小右大的原则排成如下三角形表:1、.写出这个三角形的第四行和第五行的数;2、求a100;3、设{}是集合 中的数从小到大排列而成,已知=1160,求k的值.
已知圆,直线。(Ⅰ)求证:对,直线与圆C总有两个不同交点;(Ⅱ)设与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;(Ⅲ)若定点P(1,1)分弦AB为,求此时直线的方程
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?