定义在R上的单调函数满足且对任意都有.(1)求证为奇函数;(2)若对任意恒成立,求实数的取值范围.
已知函数(Ⅰ)求函数在(1, )的切线方程(Ⅱ)求函数的极值(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.
已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD;.(3)若与平面所成的角为,求二面角的余弦值.
已知△的三个内角、、所对的边分别为、、.,且.(1)求的大小;(2)若.求.
已知数列满足,,.(1)求数列的通项公式;(2)证明:对于一切正整数,有.