设椭圆的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M的方程;(2)若直线交椭圆M于A,B两点,为椭圆M上一点,求△PAB面积的最大值.
已知函数(1)求函数的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若,求的最大值.
已知函数f(x)=xln x,g(x)=x3+ax2-x+2.(1)求函数f(x)的单调区间;(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
已知函数f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为2.(1)求函数f(x)的最小正周期;(2)若f(x)在区间[6,16]上的最大值为4,求a的值.
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.(1)当实数t为何值时,数列{an}是等比数列?(2)在(1)的结论下,设bn=log3an+1,Tn是数列的前n项和, 求T2 013的值.
辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.