已知关于x的一元二次方程.(1)若是此方程的一个根,求m的值;(2)试说明无论m取什么实数时,此方程总有实数根.
如图,正方形中,与分别是、上一点.在 ① 、② ∥、③ 中,选择其中一个条件,证明你选择的条件是(只需填写序号)
已知一纸箱中放有大小均匀的只白球和只黄球,从箱中随机地取出一只白球的概率是.写出与的函数关系式当时,再往箱中放进20只白球,求随机地取出一只黄球的概率.
如图,一只蚂蚁从点沿数轴向右直爬2个单位到达点,点表示,设点所表示的数为求的值求的值.
如图(1)在正方形ABCD中,对角线AC与BD相交于点E,AF平分于∠BAC,交BD于点F。求证:EF+- AC =AB点C1从C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从A出发,沿着BA的延长线运动,点C1与点A1的运动速度相同,当运点C1停止运动时,另一动点A1也随之停止运动。如图(2)A1、F1平分∠BA∠BA1C1,交BD于F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1 F1,A1C1,与AB三者之间的数量关系,并证明你的猜想在(2)的条件下,当A1E1=3,C1E1=2,求BD的长。
在平面直角坐标系中,△AOC中,∠ACO=90。把AO绕O点顺时针旋转90。得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(-3,1)求直线AB的解析式若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒√个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0)运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形,若存在求出T的值