设函数.(Ⅰ)当时,求函数的图象在点处的切线方程; (Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
已知定义在上的函数(其中). (Ⅰ)解关于的不等式; (Ⅱ)若不等式对任意恒成立,求的取值范围.
在中,内角、、的对边分别为、、,已知、、成等比数列,且. (Ⅰ)求的值; (Ⅱ)设,求、的值.
是公比大于的等比数列,是的前项和.若,且,,构成等差数列. (Ⅰ)求的通项公式. (Ⅱ)令,求数列的前项和.
设函数. (1)若x=时,取得极值,求的值; (2)若在其定义域内为增函数,求的取值范围; (3)设,当=-1时,证明在其定义域内恒成立,并证明().
已知椭圆的离心率为,且过点. (1)求椭圆的方程; (2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.