已知两直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m、n的值,分别使(1)l1与l2相交于点P(m,-1);(2)l1∥l2;(3)l1⊥l2且l1在y轴上的截距为-1.
已知函数,.(1)求的值;(2)设、,,,求的值.
已知函数.(I)若,求函数的单调区间;(Ⅱ)求证:(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数是的导函数)在区间上总不是单调函数,求的取值范围。
已知数列中,且点在直线上。(1)求数列的通项公式;(2)若函数求函数的最小值;(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。(1)用分别表示和,并求出的取值范围;(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4。(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求+2的概率。