为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率
已知函数(1)当时,求函数的单调区间.(2)若不等式对任意的恒成立,求a的取值范围.
如图,四棱锥S-ABCD的底面ABCD是直角梯形,侧面SAB是等边三角形,DA面SAB,DC//AB,AB=2AD=2DC,O,E分别为AB、SD中点.(1)求证:SO//面AEC BC面AEC(2)求二面角O—SD—B的余弦值.
某品牌汽车4s店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.(1)求上表中a,b的值.(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率P(A)(3)求Y的分布列及数学期望EY.
解关于x的不等式
(本小题满分12分)我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆”是由椭圆与抛物线中两段曲线合成,为椭圆左、右焦点,,为椭圆与抛物线的一个公共点,.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过的一条直线,与“盾圆”依次交于四点,使得与的面积之比为,若存在,求出直线的方程;若不存在,说明理由.