在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1、F2分别为椭圆+=1的左、右焦点.已知△F1PF2为等腰三角形.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足=-2,求点M的轨迹方程.
已知数列的前n项和和通项满足,等差数列中,.(1)求数列,的通项公式;(2)数列满足,求证:.
已知函数.(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域.
已知函数的定义域为[2,3],值域为[1,4];设.(1)求a,b的值;(2)若不等式在上恒成立,求实数k的取值范围;(3)若有三个不同的实数解,求实数k的取值范围.
已知,m是是实常数,(1)当m=1时,写出函数的值域;(2)当m=0时,判断函数的奇偶性,并给出证明;(3)若是奇函数,不等式有解,求a的取值范围.
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)(1)分别将A,B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A,B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?