如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,求昆虫爬行的最短路程.
(1)计算: 8 + ( π + 2 ) 0 + ( - 1 ) 2021 - 2 cos 45 ° ;
(2)解分式方程: x - 3 x - 2 + 1 = 3 2 - x .
已知二次函数 y = a x 2 + bx + c 的图象过点 ( - 1 , 0 ) ,且对任意实数 x ,都有 4 x - 12 ⩽ a x 2 + bx + c ⩽ 2 x 2 - 8 x + 6 .
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与 x 轴的正半轴交点为 A ,与 y 轴交点为 C ;点 M 是(1)中二次函数图象上的动点.问在 x 轴上是否存在点 N ,使得以 A 、 C 、 M 、 N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点 N 的坐标;若不存在,请说明理由.
如图,在四边形 ABCD 中, AB / / CD , AB ≠ CD , ∠ ABC = 90 ° ,点 E 、 F 分别在线段 BC 、 AD 上,且 EF / / CD , AB = AF , CD = DF .
(1)求证: CF ⊥ FB ;
(2)求证:以 AD 为直径的圆与 BC 相切;
(3)若 EF = 2 , ∠ DFE = 120 ° ,求 ΔADE 的面积.
如图,边长为1的正方形 ABCD 中,点 E 为 AD 的中点.连接 BE ,将 ΔABE 沿 BE 折叠得到 ΔFBE , BF 交 AC 于点 G ,求 CG 的长.
端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价 x 元 ( 50 ⩽ x ⩽ 65 ) , y 表示该商家每天销售猪肉粽的利润(单位:元),求 y 关于 x 的函数解析式并求最大利润.