(本题满分14分,第1小题满分6分,第2小题满分8分).已知向量,且. 设.(1)求的表达式,并求函数在上图像最低点的坐标.(2)若对任意,恒成立,求实数的范围.
(本小题满分15分)设数列为等差数列,且;数列的前项和为. (Ⅰ)求数列,的通项公式; (Ⅱ)若为数列的前项和,求.
(本小题满分15分)已知,且,设,的图象相邻两对称轴之间的距离等于. (Ⅰ)求函数的解析式; (Ⅱ)在△ABC中,分别为角的对边,,,求面积的最大值.
(本小题满分14分)已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)在(Ⅰ)的条件下,求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围.
(本小题满分15分)已知数列,满足,,且对任意的正整数,和均成等差数列. (Ⅰ)求、的值; (Ⅱ)证明:和均成等比数列; (Ⅲ)是否存在唯一正整数,使得恒成立?证明你的结论.
(本小题满分15分)设椭圆C:(),,为左、右焦点,为短轴端点,且,离心率为,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点、,且满足 ?若存在,求出该圆的方程,若不存在,说明理由.