设函数(为实常数).(Ⅰ)当时,证明:函数不是奇函数;(Ⅱ)设函数是实数集上的奇函数,求与的值;(Ⅲ)当为奇函数时,设其定义域为,是否存在同时满足下列两个条件的区间:(1),(2)对任何,都有成立? 若存在,求出这样的区间;若不存在,请说明理由.
设是函数的两个极值点,且。 (1)判定函数在区间上的单调性; (2)求a的取值范围。
已知实数a≠b,试解关于x的不等式:。
在ΔABC中,若a、b、c分别是角A、B、C所对的边长,已知,b=1,ΔABC的面积,求ΔABC外接圆面积S的值。
已知函数。 (1)若,求函数的值; (2)求函数的值域。
选修4-4:坐标系与参数方程 在直角坐标系中,直线的参数方程为,在极坐标系中(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴),圆的方程为. (Ⅰ)求圆的直角坐标方程; (Ⅱ)设直线与与圆交于点,求弦的中点的轨迹方程.