实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法). (1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆. (2)综合运用:在你所作的图中, ①AB与⊙O的位置关系是 (直接写出答案); ②若AC=5,BC=12,求⊙O的半径.
如图,在平面直角坐标系xOy中,抛物线C1:y=a(x-)2+h分别与x轴、y轴交于点A(1,0)和点B(0,-2),将线段AB绕点A逆时针旋转90°至AP. (1)求点P的坐标及抛物线C1的解析式; (2)将抛物线C1先向左平移2个单位,再向上平移1个单位得到抛物线C2,请你判断点P是否在抛物线C2上,并说明理由.
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD. (1)弦AB= (结果保留根号); (2)当∠D=20°时,求∠BOD的度数.
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5). (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标.
如图,在△ABC中, (1)作△ABC的外接圆(只需作出图形,并保留作图痕迹); (2)若△ABC是直角三角形,两直角边分别为6,8,求它的外接圆半径.
已知抛物线的函数关系式:(其中是自变量), (1)若点P(2,3)在此抛物线上, ①求a的值; ②若a>0,且一次函数的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程); (2)设此抛物线与轴交于点A(x1,0),B(x2,0).若x1<<x2,且抛物线的顶点在直线x=的右侧,求的取值范围.