已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计) (1)填空:EF= .cm,GH= .cm;(用含x的代数式表示) (2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积
已知二次函数y=x2-2mx+m2-1. (1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标; (3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC. (1)求证:MN是半圆的切线. (2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示. (1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标. (2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)
黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?
如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转). (1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果; (2)求每次游戏结束得到的一组数恰好是方程x2-3x+2=0的解的概率.