如图,在等边三角形ABC中,AB=6,AD⊥BC于点D,点P在边AB上运动,过点P作PE∥BC与边AC交于点E,连接ED,以PE,ED为邻边作▱PEDF,设▱PEDF与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6).(1)求线段PE的长(用含x的代数式表示);(2)当四边形PEDF为菱形时,求x的值;(3)求y与x之间的函数关系式.
如图9,在△ABC和△DEF中,AB = DE,BE = CF,∠B =∠1.求证:AC = DF (要求:写出证明过程中的重要依据)
如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm。点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒。(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。
图1是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120º,该六棱校的高为3cm。现沿它的侧棱剪开展平,得到如图3的平面展开图。 (1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片。现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由; (2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为 cm。(说明:以上裁剪均不计接缝处损耗。)
已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N。(1)设点P到x轴的距离为2,试求直线l的函数关系式;(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式。
如图,△ABC中,∠ACB=90º,AC=BC=1,将△ABC绕点C逆时针旋转角α。(0º<α<90º)得到△A1B1C1,连结BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F。 (1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外); (2)当△BB1D是等腰三角形时,求α; (3)当α=60º时,求BD的长。